Binding Properties and Crystal Structure of a Hemicarcerand Containing Four Diethylene Glycol Units Connecting Two Bowls

Young-Seok Byun, Omid Vadhat, Michael T. Blanda, Carolyn B. Knobler and Donald J. Cram*

Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA

A hemicarcerand composed of two bowls attached at their rims with four $O(CH_2CH_2O)_2$ units, when heated with 22 guests containing 6–12 rigidly-arranged non-hydrogen atoms, formed 22 isolable, characterized hemicarceplexes, but failed to form isolable complexes with 34 other potential guests of the same molecular size range.

Host 1⁺ was synthesized[‡], ¹ in 40–47% yields from tetrol 2^2 and 8 moles of $(TsOCH_2CH_2)_2O$, and was free of guest $(C + H)_2O$ analysis, MS FAB and ¹H NMR spectra). When 1 was heated to 100-190 °C with very large excesses of potential guests, neat or in Ph₂O, complexes were formed, isolated and characterized. Table 1 shows the structures of 22 guests that formed isolable complexes, the completeness of their characterizations, the temperatures of their formations, their yields, their stabilities, and the 500 MHz ¹H NMR signal upfield shift ranges of the guest's protons due to complexation. The signal of the inwardfacing protons of the host's 8 OCH₂O groups at δ 4.26 (broad doublet at 25 °C in CDCl₃) sharpened in the complexes and moved upfield by as much as 0.09 ppm (2-norbornanone as guest), or downfield by as much as 0.25 ppm (HOCH2CHBrCHBrCH2OH).

Potential guests that failed under similar conditions to provide isolable complexes of **1** follow: $C(CH_2OH)_4$; $C(CH_2CI)_4$; Me_3CI ; $(MeOCH_2)_3CH$; ribose; deoxyribose; *exo*-norbornylchloride; *exo*-3-chloronorbornanone; camphor; 2-oxo[1.2.3]bicyclooctane; 1,4-diaza[2.2.2]bicyclooctane; [2.2.2]bicyclooctane; adamantane; 1,3,5-(HO)_3C_6H_3; 1,2-Me_2C_6H_4; 2-MeC_6H_4OMe; 3-MeC_6H_4OMe; 1,2-Et_2C_6H_4; 1,4-Et_2C_6H_4; 1,4-(MeO)_2C_6H_4; 2,3-(HO)_2C_6H_3Me; 1,2-(EtO)_2C_6H_4; 4-IC_6H_4OMe; 1,3-(MeO)_2C_6H_4; 1,2,4-Cl_3C_6H_3; 1,2,4-Br_3C_6H_3; C_6H_5I; C_6H_5OMe; C_6H_5Me; 1,4-Me_2C_6H_4; C_6H_5NH_2; MeCHClCHClMe; MeCOCH_2COMe; and Me_NCOMe.

These results coupled with Corey–Pauling–Koltun (CPK) molecular model examinations suggest there are three classes of guests. Those of the first class, which formed isolable

Table 1 Guests complexed by Host 1, complexation temperature, isolated yield, stability and upfield proton shift ranges (ppm) in ¹H NMR spectra

3;† 100 °C; 60%; *t*_{1/2}, 20 min in CDCl₃ at 60 °C; Δδ 1.55–1.96

8;[†] 190 °C; >50%; stable in C₆D₅NO₂ at 100 °C; $\Delta\delta$ 1.48–1.92

(±)HOCH₂CHBr-CHBrCH₂OH

13; § 150 °C; > 90%; unstable in CDCl₃ at 25 °C; $\Delta\delta$ 0.89–1.25

Br

18; § 150 °C; >90%; unstable in CDCl₃ at 25 °C; $\Delta\delta$ 0.73

o

4;† 150 °C; > 90%; t_{1/2}, 10 h in CDCl₃ at 60 °C; Δδ 1.38–2.77

9;† 150 °C; 60%; stable in CDCl₃ at 25 °C; Δδ 1.39–2.03

-0

CI

14;§ 150 °C; > 90%; unstable in CDCl₃ at 25 °C; Δδ 0.9–1.16

19;§ 150 °C; >90%; unstable in CDCl₃ at 25 °C; $\Delta \delta$ 0.73

23;† 150 °C; > 90%; stable in CDCl₃ at 25 °C; $\Delta \delta$ 0.57–4.18

5;† 100 °C; >90%; $t_{1/2}$, 30 min in CDCl₃ at 60 °C; $\Delta\delta$ 1.51–2.19

/.он

10; \div 190 °C; > 60%; stable in CDCl₃ at 25 °C; $\Delta\delta$ 0.86-1.92

Br

15;† 150 °C; > 90%; unstable in CDCl₃ at 25 °C; Δδ 1.03-1.74

20; † 150 °C; >90%; unstable in CDCl₃ at 25 °C; $\Delta\delta$ 1.43–1.50

24;† 150 °C; > 90%; stable in CDCl₃ at 25 °C; Δδ 0.73-3.77

6; † 100 °C; > 80%; *t*_{1/2}, 11 h in CDCl₃ at 60 °C; Δδ 1.39–2.25

CHCl₂CHCl₂

11; \dagger 100 °C; > 90%; $t_{1/2}$, 1.1 h in *o*-(CD₃)₂C₆D₄ at 130 °C; $\Delta\delta$ 1.10

16; § 150 °C; > 90%; unstable in CDCl₃ at 25 °C; $\Delta \delta$ 0.9–1.7

21; § 150 °C; >90%; unstable in CDCl₃ at 25 °C; $\Delta \delta$ 4.00 OMe; 3.87, ArMe

T o

7;† 100 °C; > 70%; decomplexed 10% in CDCl₃ in 3d; $\Delta\delta$ 1.48–1.92

(±)MeCHBrCHBrMe

12; § 150 °C; >90%; $t_{1/2}$, 7.0 h in *o*-(CD₃)₂C₆D₄ at 130 °C; $\Delta\delta$ 0.60–1.25

Br ĹВr

17; \pm 150 °C; > 90%; stable in CDCl₃ at 25 °C; $\Delta\delta$ 0.60–1.25

22; § 150 °C; >90%; unstable in CDCl₃ at 25 °C; Δδ 1.35–2.14 complexes, are listed in Table 1. Models (CPK) of these guests could be forced with varying difficulty into the cavity of a model of 1 without breaking (non-worn) bonds of the models. However, models of those complexes that were unstable over

time at 25 °C in CDCl₃ such as the cyclohexyl mono-halides and para-disubstituted benzenes offered little steric barrier to assembly or disassembly. The second class of guests includes those which did not form isolable complexes up to 150-190 °C because their activation free energies for complexation were too high. Model examination suggests molecules such as $C(CH_2OH)_4$, adamantane, [2.2.2] bicyclooctane or camphor are in this class. What was not predicted by models was our inability to get complexes such as those of 1,2-Me₂C₆H₄, 4-IC₆H₄OMe and 2-MeC₆H₄OMe. We suggest that binding affinities and constrictive binding¹ must add to one another before stable complexes are formed. The third class of guests are those that form complexes very rapidly, but also decomplex easily and do not survive the isolation (precipitation and preparative TLC). Guests such as C_6H_5I , C_6H_5OMe , C_6H_5Me , 1,4-Me₂C₆H₄, MeCOCH₂COMe and Me₂NCOMe are examples.

As was observed for the analogue of 1 in which four 1,2-(OCH₂)₂C₆H₄ connecting groups replace the four O(CH₂-CH₂O)₂ groups of 1,¹ the decomplexation rates (¹H NMR determined) of 10G varied widely with solvent. For example, the $t_{1/2}$ values of 1 \odot 5 and 1 \odot 6 in CDCl₃ at 60 °C were 0.5 and 11 h respectively, whereas in C₆D₅NO₂ at 100 °C, $t_{1/2}$ for 1 \odot 5 was 1.7 h, and there was no decomplexation for $1\odot 6$ over several days. In another example, complex $1 \odot 11$ in CDCl₃ at 25 °C had a $t_{1/2}$ of ca. 20 h, while in 1,2-(CD₃)₂C₆D₄ at 130 °C, $t_{1/2}$ = 7 h. This high dependence of rate on solvent reflects the differences between solvation free energies of the transition states for complexation-decomplexation, and of the fully complexed and non-complexed states. The rate constants for both complexation and decomplexation were determined in 1,2-(CD₃)₂C₆D₄ for $1\odot$ 11 at 100 °C and 130 °C, from which the equilibrium constants for complexation were calculated to be 50 and 12 dm³ mol⁻¹, respectively. Thus for this system, $\Delta G^{\theta}_{100 \text{ °C}} = -2.9 \text{ kcal mol}^{-1} (1 \text{ cal} = 4.184 \text{ J})$, somewhat less negative than the values obtained for the o-xylyl-bridge system mentioned above.1

Complex 1 \odot 17 dissolved in 1,2-(CD₃)₂C₆D₄ exhibited two different chemical shifts in the 500 MHz ¹H NMR spectrum for the 8 inward-turned OCH₂O protons at 22 °C, which coalesced at $T_c = 138$ °C, with $\Delta G^{\ddagger}_{138 \ C} = 27$ kcal mol⁻¹. This phenomenon is due to restricted rotation of the *trans*-1,2-dibromocyclohexane guest relative to the host at the lower temperatures. Non-like-ended guests in other like-ended hosts have provided similar behavior.³

Stereoview 25 shows the crystal structure of 1 in which its 2 CH₂Cl₂ and 2 H₂O molecules are omitted.¶ Stereoview 26 is a drawing in which only the four bridging O(CH₂CH₂O)₂ groups of the host are included, and the two sets of four bridgehead phenyl oxygens in each hemisphere are connected to form two near squares occupying two parallel planes 4.64 Å apart. These squares are not rotated with respect to each other, but are displaced from having a common perpendicular axis by 2.67 Å. Two molecules of CH₂Cl₂ and two of H₂O are arranged centrosymmetrically in the cavity, with one Cl atom of each guest penetrating into a polar cavity 0.89 Å beyond the O₄ square, and with the two H₂O molecules located in the equatorial region, probably hydrogen-bonded to terminal oxygens of two different bridges. The portals of 1 are 28-membered rings, large enough to explain why only guests with large crosssections in all three dimensions are trapped inside by quenching the hot mixtures of host and guest. The portals are also large enough to explain why the rates of entry and departure of linear or singly-branched potential guests are high enough to make ¹H NMR detection of their complexes in solution possible only at low temperature. This is the first crystal structure of a hemicarceplex that contains two different kinds of guests at the same time.

This survey of the binding properties of 1 toward compounds containing 6-11 heavy atoms and varying numbers of hydrogens demonstrates a high degree of structural recognition by host of guest which undoubtedly varies with solvent. The results coupled with those obtained earlier with other hemicarcerands suggest that hosts immobilized by bonding to solid supports should show large separation factors among many guests in affinity chromatography, potentially useful in separation and diagnostic science. The authors thank the U.S. Public Health Service for the supporting Research Grant, GM-12640.

Received, 24th April 1995; Com. 5/02615F

Footnotes

⁺ These compounds gave C and H elementary analyses within 0.3% of theory, M⁺ m/z signals of substantial intensity in their FAB MS and ¹H NMR spectra consistent with their structures.

[‡] This procedure, patterned after a similar one in reference 1, involved Me₂NCOMe-Cs₂CO₃-20 h, 70 °C, then 8 h, 100 °C, high dilution. Use of Rb₂CO₃ or K₂CO₃ in place of Cs₂CO₃ had little effect on the yield. The solvent was evaporated under vacuum, the residue was dissolved in CHCl₃, the mixture was filtered through celite, and the 30 mL of filtrate was poured into 300 mL of MeOH. The precipitated product was chromatographed (silica gel, 5% Me₂CO-CHCl₃) to give 1.⁺ Complexations of 1 (10–20 mg) by guest (100–200 equiv.) either neat or with 0.2 to 1.0 mL of Ph₂O were carried out for 3 d at 100, 150–160 or 180–190 °C and the solutions poured into 50 mL of MeOH (hexane was the precipitant with Cl, Br and I-cyclohexane guests). The precipitate formed was separated from free host by preparative TLC, silica gel- Me₂CO in CHCl₃ (5% ν/ν).

M⁺ m/z signals of substantial intensity were observed in their FAB MS, and ¹H NMR spectra were consistent with their structures.

¶ Crystal data for $1\odot(2CH_2Cl_2,2H_2O)\cdot 8CH_2Cl_2$ (crystallized from MeOH–CH₂Cl₂ and determined at 25 °C), triclinic space group P $\overline{1}$, a = 14.921(2), b = 15.154(3), c = 17.194(3) Å, $\alpha = 99.702(4)$, $\beta = 96.327(4)$, $\gamma = 95.039(4)^\circ$, V = 3787 Å³, Z = 1, 8325 unique reflections, 2379 > $2\sigma(I)$, and was refined to R = 0.156 (SHELX764). Measurement was discontinued after $2\theta = 95^\circ$ (Cu-K_{α} radiation) in the present study because no more data could be 'observed'. Therefore, no atoms were refined with anisotropy, and H atoms are in calculated positions, C–H = 1.08 Å. The two bowls are related by an inversion centre in the middle of the cavity (see 25 and 26).

The 'square' formed by the PhO oxygen atoms (26) is planar to within 0.03 Å and the O···O sides of the square range in length from 6.35(3) to 6.92(3) Å. The angles at the corners of the squares range from 87.4(3) to $93.2(4)^{\circ}$.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 D. J. Cram, M. T. Blanda, K. Paek and C. B. Knobler, J. Am. Chem. Soc., 1992, 114, 7765.
- 2 L. A. Tunstad, J. A. Tucker, E. Dalcanale, J. Weiser, J. A. Bryant, J. C. Sherman, R. C. Helgeson, C. B. Knobler and D. J. Cram, J. Org. Chem., 1989, 54, 1305.
- 3 Container Molecules and Their Guests, D. J. Cram and J. M. Cram, Monographs in Supramolecular Chemistry, Ed. J. Fraser Stoddart, RSC, Cambridge and London, 1994, p. 1–223.
- 4 G. M. Sheldrick, SHELX76, 1976, University of Cambridge, UK.